Ultraproducts of pm-rings and mp-rings
نویسندگان
چکیده
منابع مشابه
Ultraproducts of Group Rings
Group Rings Let G = g1, g2, . . . , gn be a finite group, and let k be a field. We define the group ring k[G] to be the set of sums of the form a1g1 + a2g2 + · · ·+ angn with each ai ∈ k and gi ∈ G. Addition is defined componentwise, i.e. (a1g1 + a2g2 + · · ·+ angn) + (b1g1 + b2g2 + · · ·+ bngn) = ((a1 + b1)g1 + (a2 + b2)g2 + · · ·+ (an + bn)gn). We define multiplication in the following way: (...
متن کاملUltraproducts of Noetherian Local Rings: Properties and Applications
The present proposal is in part a continuation of the NSF Research Proposal Definability, Constructibility and Transfer (DMS-0100778/DMS-0302248 in the amount of $69,276; project details are given in §4.3 and the introduction to §5). Whereas the latter proposal was submitted via the division Foundations, in view of the underlying tools stemming from model-theory, the present proposal is cast en...
متن کاملOn n-coherent rings, n-hereditary rings and n-regular rings
We observe some new characterizations of $n$-presented modules. Using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.
متن کامل$n$-cocoherent rings, $n$-cosemihereditary rings and $n$-V-rings
Let $R$ be a ring, and let $n, d$ be non-negative integers. A right $R$-module $M$ is called $(n, d)$-projective if $Ext^{d+1}_R(M, A)=0$ for every $n$-copresented right $R$-module $A$. $R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted, it is called a right co-$(n,d)$-ring if every right $R$-module is $(n, d)$-projective. $R$...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1984
ISSN: 0022-4049
DOI: 10.1016/0022-4049(84)90010-0